Licensing opportunities

Novel Materials

Our licensing opportunities tagged with Novel Materials are shown below.

  • Mass production of graphene

    Reference number: Kam-2908-13

    Physical sciences | Download more information | Contact us about this technology

    A new method for low cost, high yield and quality graphene has been developed. It is envisaged that the electrochemical method could be readily scaled up using a multi-electrode cell with planar electrodes to produce 10kg/day which is more than current methods of chemical vapour deposition and exfoliation.

    Key benefits:

    • Cost per tonne could be reduced by over two orders of magnitude
    • Very high production rate compared to existing methods
    • Very high quality graphene as shown by SEM image below

  • Very thin coatings with electrically tuneable colour

    Reference number: Bau-2174-08

    Physical sciences | Contact us about this technology

    Structural colour is the effect seen in opal gemstones, peacock feathers and butterfly wings, where a regular nanostructure within the material causes light of specific wavelengths to be selectively reflected. By contrast, traditional methods of generating artificial colour rely on of dyes or pigments, which can be toxic, prone to bleaching by UV, or subject to other surface-level degradation.

    Researchers in the Department of Physics have been exploring the behaviour of thin layers of noble metals such as gold, silver or copper coated onto elastomeric films containing nanometre scale voids. The interaction of these films with light results in selective absorption and hence structural colour which can be tuned by bending, stretching or applying an electric field. The techniques are believed to offer relatively low cost, scalable manufacturing processes which can be applied in a wide range of applications requiring novel colour behaviour in very thin coatings. These coatings could be applied to injection moulded items, fabric, films or any other solid format (e.g. http://www.wired.com/2013/11/weird-nanophotonic-materials/#slideid-309831).

    The technology is protected by a granted US patent and is undergoing examination in Europe.

    We are now looking for companies who wish to work with us to develop the technology into something more commercially applicable. If you would like to find out how you can work with us please get in touch using the contact details provided.

  • Printable Inks based on Layered Nanomaterials

    Reference number: Fer-2710-12

    Physical sciences | Download more information | Contact us about this technology

    Printable electronics have to date been limited by the lower electron mobility and hence operation speed of organic materials compared to silicon, the production cost, processing requirements and performance of metal or carbon nanoparticle-based inks. Current generation transparent and electrically conductive layers are stiff and brittle and hence limit flexible electronic applications.

    Professor Andrea Ferrari and his team in the Department of Engineering at the University of Cambridge have developed a novel method of ink production based on layered nanomaterials such as graphene. This technology overcomes the issues of current printable inks and can be printed by various methods on flexible substrates.

  • Polymer Opals - stretch-to-change colour

    Reference number: P2012-0042

    Physical sciences | Download more information | Contact us about this technology

    Without using dyes or other applied colourants, polymer opals reflect specific colours due to their physical structure. By choosing the spacing of tiny polymer spheres which make up the material, the colour can be tailored to any colour in the rainbow. Stretching the material changes that spacing – and also the colour. So a sample of polymer opal material might stretch from red to green and then blue, reversibly relaxing back to its original colour. Colour changes can even be localised to reveal a pattern such as a logo on stretching.

    Researchers at the University of Cambridge, working with colleagues at the LBF Fraunhofer Institute in Darmstadt (formerly DKI), have developed this material system and its manufacturing process so that polymer opals can now be produced in an industrially scalable way and laminated simply onto any appropriate substrate, including fabric, for applications such as security, brand protection and clothing. We are now actively seeking a partner to take this process to the next stage and would welcome contact from companies with interest or experience in this area.

    Please see the linked documents for technical information and a more visual demonstration of polymer opals’ colour behaviour.

  • Microcapillary Films

    Reference number: Mac-808-03

    Physical sciences | Download more information | Contact us about this technology

    A manufacturing process for embedding multiple parallel micro-capillaries into flat, flexible polymer tapes and films has been developed. Application areas include chemical and biochemical analysis, medical applications, heat exchangers and pressure sensing applications.

    The shape and size of these micro-capillaries can be easily controlled, ranging in diameter from 5 to 500 microns, and having circular, elliptical or diamond cross-sections, allowing transport of liquids or gases at pressures as high as 50 bar. The capillary walls can also be designed to be semi-permeable or catalytic.

  • Gaussian Approximational Potential

    Reference number: Csa-2168-08

    Physical sciences | Download more information | Contact us about this technology

    Gaussian Approximation Potential (GAP) is a novel atomistic modelling technique that combines accuracy with speed. By inferring the energy of an atom from the position and identity of its neighbours using a precomputed database of exact quantum mechanical solutions, the potential energy surface of a system of atoms and molecules is approximated.

    This methodology allows a controllable compromise to be made between the accuracy of Quantum Chemistry models and the speed of Interatomic Potential methods, with applications in a diverse range of fields including pharmaceuticals, aerospace, electronics and biotechnology.